Na₅Sm (WO₄)₄ 发光晶体的生长及光谱特性

姚连增

(中国科学技术大学材料系,合肥)

Growth and spectral properties of luminescent crystals Na₅Sm (WO₄)₄

Yao Lianzeng

(China University of Science and Technology, Hefei)

提要:本文报道了用助熔剂缓冷法生长新型发光晶体 Na₅Sm(WO₄)₄, 计算了它的晶格常数, 测定了它的红外光谱、吸收光谱、荧光光谱和激发光谱,并确定了晶体中 Sm³⁺ 离子的能级。研究表 明,该晶体是有前途的激光晶体。

关键词: Na₅Sm(WO₄)4晶体光谱

一、前言

A₅Re(WO₄)₄(A 是碱金属元素, Re 是稀土元 素)是一类高稀土浓度、高效基质发光材料,有可 能成为优良的高效激光材料^{CD},国外已有一些报 道^[3~8]。但未见有该类材料的晶体生长及其晶体结 构、发光特性的进一步报道。同时,由于A₅Re (WO₄)₄系列材料的晶体生长很困难,故迄今为止, 也未见有关 Na₅Sm(WO₄)₄晶体方面的研究报道。

本工作在 Na₆Eu(WO₄)4 晶体的生长工艺 基础 上^[9], 对生长工艺进一步完善,首次成功地培养出了 最大尺寸为 2×2×1 mm³的 Na₆Sm (WO₄)4 单晶 体。

二、晶体生长

2.1 原料制备

以优级纯 H₂WO₄、基准试剂 Na₂OO₃ 和纯度为 99.95% 的 Sm₂O₃ 为原料,按下式配比

 $Sm_2O_3 + 6Na_2CO_3 + 9H_2WO_4$

 $\xrightarrow{650^\circ\mathrm{C}}_{2.5\mathrm{hr}} 2\mathrm{Na}_5\mathrm{Sm}(\mathrm{WO}_4)_4 + \mathrm{Na}_2\mathrm{WO}_4 + 6\mathrm{CO}_2$

$+9H_2O$

然后将原料在玛瑙研钵中充分研细,放入刚玉坩埚, 在箱式电阻炉中 650°C 恒温灼烧 2~3 小时后,停炉, 自然冷却至室温取出,用去离子水洗去其中过量的 Na₂WO₄。由于 Na₆Sm (WO₄)₄ 粉末比重较大且不 溶于水,因而沉淀在底部,取出,烘干,研细备用。 Na₅Sm(WO₄)₄粉末呈白色。

2.2 晶体生长

鉴于 Na₅Re(WO₄)₄ 晶体结构的相似性以及稀 土离子 Eu³⁺、Sm³⁺ 化学性质的相似性,本文在生长 中参考了 Na₅Eu(WO₄)₄ 晶体的生长工艺。

差热及 X 射线衍射分析表 明, Na₅Sm(WO₄), 在 750°C 左右为非同成分熔融,这一性质给晶体生 长带来了很大困难。然 而,对有关的相图研究表 明⁽²⁾,采用助熔剂生长法仍有可能获得所需要的晶 体。

以分析纯 Na₂WO₄ 为助熔剂,将 Na₅Sm(WO₄)。 粉料和助熔剂以适当配比混合、研细,放入刚玉坩埚 内。生长装置如图 1 所示。炉内温场下低上高,生 长区温度梯度为 5~10°C/cm。控温系统采用 田-851 型微电脑温度程序设定仪与 DWT-702 控温仪 联机使用。实验证明,选择合适的炉料配比,熔料温 度和时间,对避免熔质分解有利。

一般采用快速升温至 700°C, 然后以 1°C/hr 的 速率缓慢升温到 770°C, 恒温数小时, 待原料充分熔 化后, 以 1°C/hr 的速率降温至 740°C, 然后再以 0.1°C/hr 的速率继续缓慢降温。在 730°C 左右可有 晶核折出, 恒温两天, 待晶核继续长大, 再以 0.1°C/ hr 的速率降温至 700°C, 停炉, 随炉自然冷却至室 温。 取出洗去助熔剂, "即可得到 $Na_{0}Sm(WO_{4})_{4}$ 晶 体。晶体为淡黄色透明。图 2 是 $Na_{5}Sm(WO_{4})_{4}$ 单 晶体的劳厄相。

显微镜下可观察到晶体中有包裹体和结构不完

图1 实验单晶炉示意图

整等缺陷,这主要是由于 Na2WO4 助熔剂在较低温 度时粘滞度较高,在 730°C 时为 9 厘泊[10],致使在 多组分熔体中,熔质扩散困难和易产生组分过冷。

三、晶体结构与光谱

3.1 结构

用 D/max-r_A 型转靶 X 射线衍射仪对 Na₆Sm (WO₄)₄ 单晶粉末做 X 射线衍射分析。结果表明, Na₅Sm(WO₄)₄ 晶体属四方晶系,空间群为 I4₁/a, 用 Cu 靶 Ka_1 线(λ_{α} ,=0.15405 nm)对衍射面的面间 距 d 值进行修正,并确定各衍射面的面指数,用自编 计算机程序计算,得到 Na₅Sm(WO₄)₄ 晶体的晶胞 参数为 a=1.1507 nm, c=1.1424 nm, 与文献[3]给 出的结果基本一致。

3.2 吸收光谱

在UV-365型分光光度计上测得 Na₆Sm (WO₄)4晶体在室温下的吸收光谱,测量范围为 200~1800 nm 波长,如图 3 所示。

由图 3 可以看到, N2₆Sm(WO₄)4 晶体的吸收光 谱非常丰富,从紫外一直延续到近红外区。在紫外 区,晶体有强烈的基质吸收,吸收边在 240 nm 附近, 据此估计, Na₆Sm(WO₄)4 晶体能级的禁带宽度约

为5.2eV,属电介质离子晶体。

该晶体在紫外可见区有大量的吸收峰,其中较 强者位于 326 nm、340 nm、360 nm、369 nm、400 nm、 413 nm、460 nm、470 nm,它们分别属于⁶H_{5/2}~ ⁴P_{1/2}、⁴H_{11/2}、(⁴D, ⁶P)_{5/2}、⁴F_{9/2}、⁶P_{3/2}、(⁶P_{5/2}, ⁴P_{5/2})、I_{18/2}和⁴I_{11/2}等谱项的跃迁,其中以⁶H_{5/2} ~⁶P_{3/2}的跃迁(400 nm)吸收为最强。中心波长位 于 942 nm、1087 nm、1252 nm、1042 nm、1515 nm 和 1580 nm 的近红外吸收带分别属于 ⁶H_{5/2}—⁶F_{11/2}、 ⁶F_{9/2}、⁶F_{7/2}、⁶F_{5/2}、⁶F_{3/2}和 ⁶F_{11/2}等谱项的跃迁,其中 以⁶H_{5/2}—⁶F_{3/2}(1515 nm)跃迁吸收最强。应当说此 晶体如能实现激光振荡,泵浦区是比较充足的。

3.3 荧光光谱

用 850 型紫外可见荧光分光光度计测量了 Nas Sm(WO4)4 晶体室温下的荧光光谱,测量范围为 450~730 nm 波长,激发波长为 400 nm,参见图 4。

在可见光范围内得到了5组荧光发射峰,它们 分别是:500~520 nm 波段的⁴G_{7/2}—⁶H_{5/2}跃迁,中 心波长在 564 nm 处的 $4G_{5/2}$ — $^{6}H_{5/2}$ 跃迁,中心波长 在 600 nm 的 ${}^{4}G_{5/2}$ — ${}^{6}H_{7/2}$ 跃迁,中心波长在 646 nm 处的 ${}^{4}G_{5/2}$ — ${}^{6}H_{9/2}$ 跃迁和 690—710 nm 波段的 ${}^{4}G_{5/2}$ — ${}^{6}H_{11/2}$ 跃迁。其中最强线为 646 nm 波长发射, $\frac{1}{e}$ 处线宽约为 2nm,其它波段没有明显的荧光峰。

3.4 激发光谱

用 850 型紫外可见荧光分光光度计测出范围 在 300~580 nm 波长的激发光谱,图 5 表示的就是 Na₅ Sm (WO₄)₄ 晶体室温下 646 nm 荧光发射的 激发光 谱。其中 以 405 nm 的 激发效果最佳,它对应于 ⁶ $H_{6/2}$ —⁶ $P_{3/2}$ 的吸收跃迁,其次是 360 nm 的激发,它 对应于 ⁶ $H_{5/2}$ —⁶ $P_{5/2}$ 的吸收跃迁。

对照图 3 与图 5 可以看到, Na₀Sm(WO₄)4 晶体的吸收光谱与激发光谱在 300 nm~540 nm 波段内

图4 吸收率为4×10⁻⁴的薄膜的光吸收动态信号 张驰振荡的微区光程变化的过程。

本文所描述的方法,可推广应用于更广 泛的领域。本法是一种高灵敏、高衬度地检 测微小光程变化的测量方法,因而一切可以 转化为微小光程变化的物理量,都可以考虑 用本法进行测量。特别重要的是,若以可调 整谐激光束作为泵浦光束,本文的装置可被

二者峰的位置完全对应。

由 Na₆Sm(WO₄)₄ 晶体的荧光光谱和激发光谱 可以看到, 对应于 646 nm 的强荧光发射, 只要能找 到适当的激发光源, 在 Sm³⁺ 的发光上能级 ${}^{4}G_{5/2}$ 和 下能级 ${}^{6}H_{9/2}$ 之间实现粒子数反转分布是完全可能 的。

本工作得到了我校晶体实验室陈葆梅、徐维民 和结构分析中心程庭柱等同志的大力协助,特此致 谢。

参考文献

- 1 黄金根, P. Porcker, 发光与显示, 4, 11(1984)
- 2 M. V. Mokhosoev et al., Zhur. Neorg. Khim., 14, 596(1969)
- 3 V. N. Karlov, E. Ya. Role, Zhur. Neorg. Khim., 16, 1713(1971)
- 4 L. M. Kovba et al., Dokl. Akad. Nauk SSSR, 175, 1290(1967)
- 5 V. A. Efremov et al., Kristallografiya, 25, 254 (1980)
- 6 V. K. Trunov et al., Zhur. Neorg. Khim., 23, 2645(1978)
- 7 H. Y. -P. Hong and K. Dwight, Mat. Res. Bull., 9, 775(1974)
- 8 S. R. Chinn and H. Y. -P. Hong, Opt. Commun., 18, 87(1976)
- 9 潘峻,人工晶体,16,15(1987)
- 10 张克从,张乐德主编,晶体生长(科学出版社,北京, 1981)

(收稿日期: 1987年11月15日)

用于测量薄膜或表面样品的高灵敏度激光光 谱测量。

范正修同志为本文提供测量样品,并进 行十分有益的讨论,深表谢意。

参考文献

- R. L. Swofford and J. A. Morrell, J. Appl. Phys., 49, 3667 (1978)
- 2 D. M. Friedrich, in "Ultrasensitive Laser Spec troscopy", edited by D. S. Kliger (Academic Press, New York, 1983), pp. 311~342
- 3 A. C. Tam, in "Ultrasensitive Laser Spectroscopy", edited by D. S. Kliger, Academic Press, New York, 1983), pp. 1~108
- 4 徐毓光 et al., 光学学报(待发表)